Online Incremental Feature Learning with Denoising Autoencoders
نویسندگان
چکیده
While determining model complexity is an important problem in machine learning, many feature learning algorithms rely on cross-validation to choose an optimal number of features, which is usually challenging for online learning from a massive stream of data. In this paper, we propose an incremental feature learning algorithm to determine the optimal model complexity for large-scale, online datasets based on the denoising autoencoder. This algorithm is composed of two processes: adding features and merging features. Specifically, it adds new features to minimize the objective function’s residual and merges similar features to obtain a compact feature representation and prevent over-fitting. Our experiments show that the proposed model quickly converges to the optimal number of features in a large-scale online setting. In classification tasks, our model outperforms the (non-incremental) denoising autoencoder, and deep networks constructed from our algorithm perform favorably compared to deep belief networks and stacked denoising autoencoders. Further, the algorithm is effective in recognizing new patterns when the data distribution changes over time in the massive online data stream.
منابع مشابه
Supplementary Material: Online Incremental Feature Learning with Denoising Autoencoders
Roughly speaking, this update rule is based on the following idea: increase the number of feature increments when the performance improves (i.e., the model is not at optimum), and decrease the number of feature increments when there is minimal or no performance improvement (i.e., the model has converged). From this intuition, we consider the following update rule (referred to as “update rule I”):
متن کاملFeature Transfer Learning for Speech Emotion Recognition
Speech Emotion Recognition (SER) has achieved some substantial progress in the past few decades since the dawn of emotion and speech research. In many aspects, various research efforts have been made in an attempt to achieve human-like emotion recognition performance in real-life settings. However, with the availability of speech data obtained from different devices and varied acquisition condi...
متن کاملMarginalized Stacked Denoising Autoencoders
Stacked Denoising Autoencoders (SDAs) [4] have been used successfully in many learning scenarios and application domains. In short, denoising autoencoders (DAs) train one-layer neural networks to reconstruct input data from partial random corruption. The denoisers are then stacked into deep learning architectures where the weights are fine-tuned with back-propagation. Alternatively, the outputs...
متن کاملScheduled denoising autoencoders
We present a representation learning method that learns features at multiple different levels of scale. Working within the unsupervised framework of denoising autoencoders, we observe that when the input is heavily corrupted during training, the network tends to learn coarse-grained features, whereas when the input is only slightly corrupted, the network tends to learn fine-grained features. Th...
متن کاملLearning Representations of Affect from Speech
There has been a lot of prior work on representation learning for speech recognition applications, but not much emphasis has been given to an investigation of effective representations of affect from speech, where the paralinguistic elements of speech are separated out from the verbal content. In this paper, we explore denoising autoencoders for learning paralinguistic attributes, i.e. categori...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012